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Alntract--A theoretical model has been developed for core-annular flow of a very viscous oil core and a 
water annulus through a horizontal pipe. Special attention was paid to understanding how the buoyancy 
force on the core, resulting from any density difference between the oil and water, is counterbalanced. This 
problem was simplified by assuming the oil viscosity to be so high that any flow inside the core may be 
neglected and hence that there is no variation of the profile of the oil-water interface with time. In the 
model the core is assumed to be solid and the interface to be a solid/liquid interface. 

By means of the hydrodynamic lubrication theory it has been shown that the ripples on the interface 
moving with respect to the pipe wall can generate pressure variations in the annular layer. These result in a 
force acting perpendicularly on the core, which can counterbalance the buoyancy effect. 

To check the validity of the model, oil-water core-annular flow experiments have been carded out in a 
5.08 cm and an 20.32-cm pipeline. Pressure drops measured have been compared with those calculated with 
the aid of the model. The agreement is satisfactory. 

I. INTRODUCTION 

Pipeline transport of a very viscous oil can be effected by heating the oil and insulating the 
pipeline. However, these operations involve considerable capital investment and operating 
expenditure. 

Another possibility is the simultaneous transport through the pipe of the highly viscous oil 
and an immiscible "low-viscosity" liquid such as water. In the past, experiments have been 
carried out to examine this possibility; see for instance Charles et al. (1961). During these 
experiments a number of different flow patterns were observed, such as water drops in oil, 
concentric oil-in-water (core-annular flow), oil slugs in water and oil drops in water. The pressure 
drops measured over the pipe indicated that the addition of water greatly reduced the pressure 
gradient. 

It was found that of all the observed flow patterns the flow of the highly viscous oil as a 
core, with the water flowing only in the annular space between the core and the pipe wall, was 
the most desirable for simultaneous flow. The experiments showed that in the case of 
core-annular flow the pressure drop over the pipe could be of the same order of magnitude as, 
or even smaller than, the pressure drop for the flow of water alone at the same mean velocity as 
for the mixture. The annular film can be very thin and thus the amount of water required small, 
so that the pumping power necessary to move this water is negligible. The mode of core-annular 
flow also has the advantage that the contact surface area between oil and water is minimal. 
Entrainment of one liquid by the other may be expected to be much less than with the other 
flow patterns. 
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One of the central questions regarding core-annular flow in a horizontal pipe is how the 
buoyancy force on the core, resulting from any density difference between oil and water, is 
counterbalanced. In this paper a theoretical model is developed which gives a possible answer 
to this question. In this model the oil viscosity is assumed to be so high that any flow in the 
core, and hence any variation in the oil-water interface form with time, may be neglected. So 
the core is assumed to be solid and the interface to be a solid/liquid interface. 

The core surface is assumed to be rippled, on the basis of observations during the 
experiments. The simplification to a solid core permits free choice of the wavelength and shape 
of the ripple. However, in order to make this choice as realistic as possible, experiments Were 
carried out to determine the shape of the ripple. 

In order to check the validity of the model oil-water core-annular flow pressure drop 
measurements were also made in 5.08 cm and an 20.32 cm pipeline. These measurements have 
been compared with pressure drops predicted with the aid of the model. 

2. EXPERIMENTAL INVESTIGATION OF RIPPLE SHAPE 

The experiments were performed in a perspex pipe 50 m long and 0.05 m in diameter. The 
difference in density between water and the oil was about 30 kg/m 3. The amount of water was 
varied between 20% and 1%. Oil and water were introduced into the pipe via an inlet device, 
which consisted of a central tube surrounded by an annular slit. The oil was supplied via the 
tube, the water via the slit. 

Although the oil core was pumped into the pipe concentrically, it adjusted itself eccentric- 
ally, due to the density difference. As long as the oil core was supplied at a velocity above a 
certain critical value ( -  0.1 m/s), a water film remained between the oil core and the pipe wall, 
not only in the lower part of the pipe, but also in the upper part. However, in the upper part the 
film was much thinner. Some photographs of the experiments are shown in figures l(a)-(c). In 
the figures the flow is from left to right. The section shown is located 1 m from the bend 
downstream of the inlet device. Only when the oil core was supplied at a velocity below the 
cirtical value did it touch and foul the upper part of the pipe. In that case the flow pattern 
changed from eccentric core-annular to stratified, with all the oil in the upper part of the pipe 
and the water only in the lower part. 

Above the critical velocity the eccentric core-annular flow was steady after a few diameters. 
Changing the amount of water did not affect the flow pattern very much; the thin water film in 
the upper part remained almost the same, only the thickness of the water film in the lower part 
changing (see figures 1 a-c). The observations also indicated that in the upper part the thickness 
of the water film is nearly independent of the tangential coordinate; in the lower part the 
thickness increases towards the bottom of the pipe. For the computational modelling it was, 
therefore, assumed that the thickness of the water film in the upper part is constant; in the 
lower part it increases linearly with 0 (see figure 2). During some of the experiments a 
rectangular roughness element was placed against the pipe wall at a certain location inside the 
pipe in order to study the reaction of the flow to such a disturbance. The eccentric core-annular 
flow passed this disturbance without difficulty; a few diameters downstream it was steady again. 

Immediately after the inlet device a ripple appeared at the oil-water interface. The rate of 
growth of the amplitude of this ripple was quickly damped out; so a ripple with a finite ampli- 
tude remained at the interface. At the top of the core the ripples have a sawtooth-like shape. 
The wavelength is of the same order of magnitude as the radius of the pipe. From the 
observations it could not be concluded that the bottom ripples are similar to the top ripples. In 
some cases the photographs even suggest possible opposite asymmetries at top and bottom. 
However, as will be shown later, the important part of the water film is at the top, where the 
downthrust due to lubrication forces is generated. The lubrication forces at the bottom are 
negligible. To facilitate the computational modelling it is, therefore, permissible to assume in 
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(a) 11.1% WATER 

(b) 8~, WAIER 

(c) 6.3% WATER 

Figure 1. Experiments with oil-water core-annular flow in a 2-inch pipe. The flow is from left to right. 

the calculations that the bottom ripples are similar to the top ripples. So the ripple shape is 
assumed to be independent of 0 (see figure 2). 

3. T H E O R E T I C A L  MODEL 

As mentioned in the introduction, the oil core is assumed to be solid and hence the oil-water 
interface to be a solid/liquid interface. The reason for this assumption is that it simplifies the 
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Figure 2. Core-annular flow with a sawtooth-shaped solid core. 
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flow problem considerably. To solve the real flow problem, in which both core and annulus 
have a finite viscosity, is very difficult. 

A frame of reference is chosen, according to which the core is at rest and the pipe wall has a 
velocity W in the x-direction (see figure 2). r, 0 and x are cylindrical coordinates, h(O, x) 
represents the thickness of the water annulus and R is the radius of the pipe. In accordance 
with the observations, the solid core is assumed to be rippled. In the x-direction (0 = constant) 
h is assumed to be periodic and of sawtooth shape; the wavelength l is of the same order of 
magnitude as R. As explained in paragraph 2 the ripple shape is assumed to be independent of 
0. In the 0-direction (x-constant) h is assumed to be symmetric with respect to the line through 
0 = 0 and 0 = Ir (see figure 2). As also explained in paragraph 2 for 0 ~< 0 ~< ~r[2, h is assumed to 
be independent of 0; for ~rl2 < 0 ~< Ir h increases linearly with 0 (see figure 2). This can be 

written as 

h = h o - e - a ~  for 0~<0~<Ir/2 and O<~x<<-! ' [1] 

• ( x  - l ' ) .  
h = h o - e - a . a ( ~ _ l , ) I o r  O<~O<~rl2 and l'<~x<~l [2] 

x . . (0 - ~ r / 2 ) .  
h = h o - e - a - ~ + 4 e  ~r[2 Ior ~rl2<~O<~r and O<~x<~l ' [3] 

, ( x - l ' ) . .  ( O - ~ r / 2 )  
h=ho-e-a-eaTz--~,,~-e,~e~l_v) ~/2  for ~r[2<O<~r and l'<x<~l. [4] 

At the trough of the ripple (x=0)  the film thickness is ho-e at the top and ho+3e at the 
bottom, where e represents half the eccentricity of the core. The parameter a gives the 
amplitude of the ripple in the core surface (see also figure 2). At the trough the surface area of 
the water film in the upper part of the pipe is equal to 2. (¢d2) R • (ho-  e), and in the lower part 
2{(~r/2) R .  ( / to -e )+  (1/2). (~'12)R. 4e}. So the total area of the water film is 2~rRho, and the 
mean thickness of the water film at the trough is given by ho. l' is the distance from x = 0 to the 
minimum in h. 

The purpose of the calculation below is to investigate the nature of steady, eccentric 
core-annular flow. For a steady situation to arise a balance is required between the buoyancy 
force on the core and the vertical components of the pressure forces and viscous forces on the 
core generated by the water flow in the annulus. In the calculation the hydrodynamic 
lubrication theory will be applied to the water flow in the annulus. This means that the following 

conditions are assumed to hold 

a ~ 1 [5] 
/ (  

a_ ~ 1 [6] I 

pWh a 
"T ~ 1, [7] 

in which p represents the density of the water in the annulus and ~ the viscosity of water. 
From the visual observations discussed in section 2 it can be concluded that the  

conditions [5] and [6] are satisfied. To calculate condition [7] the values of  h, a and I havc to be 
known. From the observations it can be concluded that due to the buoyancy effect the water 
film is extremely thin in the upper part of the pipe. It is, however, very difficult to perform 
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accurate measurements of h and a in the upper part. As mentioned earlier, the important part 
of the water film is at the top, where the downthrust due to lubrication forces is generated. The 
lubrication forces at the bottom are negligible. In the coming calculation it is, therefore, 
assumed that condition [7] is also satisfied. It will obviously have to be checked in due course 
whether the results of calculations made with the model indeed satisfy condition['/]. 

At the moment it is not known how the ripple height and wavelength should be selected 
from known properties and velocities of the fluids. The present calculation was therefore based 
on the photographs taken during the tests in the 2-inch pipe (see figure 1) and the pressure 
losses measured. In order to improve the prediction of the ripple parameters the authors of this 
paper are developing a new calculation method. It is an extension of the method given by Yih 
(1967) for the calculation of the stability of plane Couette-Poiseuille flow of two superposed 
layers of liquids of different viscosity. Yih showed that such a flow can be unstable, however 
small the Reynolds number is. Wondering what would happen to the flow when it was unstable 
and slightly disturbed, Yih came to the conclusion that stable waves of finite amplitude would 
occur at the interface. In addition, experiments are planned in which the ripple height and 
wavelength will be measured as a function of the fluid properties and velocities. The experi- 
mental resuRs will be compared with theoretical predictions. The authors hope to report on this 
experimental and theoretical work in the near future. 

The starting-point of the calculation is the basic equation of the hydrodymanic lubrication 
theory: the so-called Reynolds equation 

~0 / h 3 a6~ Oh [81 

For the derivation of the Reynolds equation see, for instance, Tipei (1962). 
The variable ~ is given by 

4, = p + pgr cos 0, [9] 

in which p is the pressure at pipe centre level and g the acceleration due to gravity. Equation 
[8] is solved for the water flow in the annulus. Because of symmetry (see figure 2) the boundary 
conditions for ~ in the 0-direction are given by 

for 0 = 0 : ~-~ = 0 [10] 

for 0 = ~" : ~ -- 0. [11] 

With respect to the boundary conditions in the x-direction it is assumed that 

for x = 0 : ~ = 4~1 (is constant) [12] 

for x = nl : ~ = ~2 (is constant) [131 

in which n is an integer, and (~2- ¢kO/nl is the pressure gradient over the pipe. The objective in 
taking a number of wavelengths n into account is to find the periodic solution. As will be shown 
later, n = 7 is sufficient for the lubrication approximation to settle to near-periodic conditions. 
To be on the safe side n = 13 is used in all the calculations. 

Once the pressure ~k is known, the velocity components of the water in the 0-direction (v) 
and the x-direction (w) can be calculated from the following two equations derived with the aid 
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of the hydrodynamic librication theory 

1 ) =  

G. OOMS et al. 

1 o,k 
2~R 0-O y(y - h) [14] 

W=21~ Ox y ( y - h ) + W  1 -  , [15] 

in which y is the radial distance from the pipe wall 

y = R -  r [16] 

For known values of (k, v and w the force F~, exerted by the water on the core in the 
horizontal direction and the force F3, exerted in the downward direction, can then be 
calculated. The force F~, exerted by the water on the core over a ripple wavelength l half-way 
between x = 0 and x = nl in the i-direction, is given by 

F~ = f f  (pa,j ' (') - o'ij)n~ dS, 
$3 

[17] 

in which $3 is the core surface between x and x + l as shown in figure 3, 6~ i is the Kronecker 
symbol, ~j the viscous stress tensor and n~ c) the unit normal on the core as shown in figure 3. 
As the integral of [17] is difficult to calculate, Fi will be expressed in an integral over the 
surface $4 of the pipe wall (see figure 3). To this end we make use of the fact that in steady flow 
the pressure forces and viscous forces exerted on the volume of water bounded by S~ to $4 
must balance the weight of the water. Hence 

ff p ,,ds-ff p ,,ds-ff 
S 1 S 2 S 3 $4 

[18] 

in which the surfaces S~ and $2 are as indicated in figure 3, n~ p) is the unit normal on the pipe 
wall (see figure 3) and Vw is the volume of the water bounded by $1 to $4. The integer 1 in 8ix 
refers to the horizontal axis in the x-direction, and the integer 3 in 6~ to the downward vertical 
axis. The S~ and $2 integrals contribute no vertical force. However, they do contribute a 
horizontal force due to the pressure gradient over the pipe. For this reason they are not omitted 

__L.___ 

n(P) 

x 

Figure 3. Control volume in the annulus bounded by the surfaces $1-$4. 
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in [18]. Substitution of [18] in [17] gives 

F,=ffpS,,ds-ff pS,,ds-ff (pSij- ,)n °)dS÷pgVwS,3. 
st s: s4 

[19] 

For the downward vertical direction (i = 3) [19] becomes, after substitution for ~j 

¢ !  ~-1 

0v F3= 2R f f (P)y=ocos O dO dx + 2~R f f (~)yffiosin O dO dx + agV~ 
O0 O0 

[20] 

In steady flow the force F3 exerted by the water on the core must balance the gravity force on 
the core. Hence, 

• - I  ¢ 1  

2u f f (P),-oc°sO dO dx+2 R f f °(-E) sinO dO dx+pgVw+#cgVc =0, 
y=0 

0 0  0 0  

[21] 

in which pc represents the density of the core and Vc the volume of the core between x and 
x+ I. Substitution of [9] and [14] in [21] then yields the following condition for steady 
core-annular flow 

• "1  ~ ' !  

ff ff 2R 4~ cos 0 dO dx - h - ~  sm 0 dO dx -- (0 - pc)gV~. [22] 
0 0  0 0  

At low water percentages Vc'~ wR21 and [22] becomes 

ff ff ock sin 2R 4~ cos 0 dO dx - h ~ -  0 dO dx = (O - Pc)g IrlR2. 
O0 O 0  

[221 

Equation [22] states that in steady core-annular flow the buoyancy force on the core is 
counterbalanced by hydrodynamic lubrication forces. 

For the horizontal direction (i = 1) [19] becomes, after substitution of ~j 

F,--ffpds-ff  dS-2 Rff( ),.odOdx. 
8i ~ 0 o 

[23] 

As mentioned earlier, half-way between x = 0 a n d  x = nl p ceases to change over a wavelength, 
apart from the pressure drop due to the pressure gradient over the pipe. Hence 

f f pds-f f pdS= (tkz-ckZ)n S~. 
st S2 

Substitution of [9], [15] and [24] in [23] yields 

~ r l  w l  

F'=( '- 'OS'÷sffh dOdx+Z Rwffldodx.,  
O 0  O 0  

[24] 

[25] 
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The drag force FI on the core must be equal to the driving thrust on the core; thus 

FI = (62 -  61)S5 ' [26] 
/1 

in which, as shown in figure 3, $5 is the surface area of a cross-section of the core. Substitution 

of [26] in [25] yields the following condition for core-annular flow 

z , l  w l  

Rffh dOdx+2 'Rwffldodx= 
O 0  O 0  

" t r R 2 ( t 2 -  61) 
[27] 

4. S O L U T I O N  P R O C E D U R E  

Dimensionless axial distance X = xIR, annular thickness H = h/R, ripple length L = l/R, 
pressure 4)= 6R/6 ~W and density P = pR2gl6 I~W are introduced. Equation [8] becomes, in 

dimensionless form 

a 304) , a / , ,304)X 
aX' [8'] 

while the boundary conditions become 

00  
for 0 = 0 : ~ = 0 [10'] 

04) 
for 0 = 1r : -~- = 0 [11'1 

for X = 0 : 4) = 01 [12'] 

for X = nL : • = 4)2. [13'] 

After introducing the dimensionless variables and dividing by 1rL condition [22'] can be written 

as  

~rL ~ L  

-2ff ..°0 • cos 0 dO dX - H -~- sin 0 dO dX = P - Pc. 

O 0  O 0  

[22'] 

Condition [27] becomes 

*rL ~rL 

ff o, 1if1 (o2-0,, lJ_ H ~ dOdX + ~ -~ dO dX = - -  
,rL nL 

O 0  O 0  

[27'] 

Originally the solution procedure was as follows. First H(O, X) and a certain value for 
(eP2-4)0 were chosen. For H the sawtooth function of figure 2 defined by [1]-[4] was chosen. 
Then [8'] with the boundary conditions [10']-[13q was solved. The calculated value of • was 
then substituted in [27') and it was usually found that this condition was not satisfied. So a new 
value for ( 0 2 - 0 0  was chosen and the calculation repeated; this iteration was continued until 
[27'] was satisfied. Substitution of the final solution for • in [22'] yielded the dimensionless 

density difference (P - Pc) between annulus and core, which could be counterbalanced. 
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To avoid the iteration the following solution procedure was adopted. Without loss of 
generality take (I+ = 0. Let Q(“) be the solution of [S’j and [lo’]-[13’], with @ = 1 and the r.h.s. of 

[8’j being replaced by zero. Let Q, (‘) be the solution of [8’] and [lo+[13’] with Qz = 0. 

@ = @@(U) t @” is then the general solution. Let the first and second terms on the left of [27’] 
be called Dr and 4, i.e. 

TL 

D,=& H a@ zdOdX 

00 
WI 

Dr is linear in Q and 4 is independent of a. Let D@) = D1(@‘cr) t 02. Then 127'1 becomes 

Hence the value of a2 is given by 

+&f&j. r311 

This solution procedure requires only two calculations; firstly for O”‘, from which D(‘) is 
calculated, and secondly for 0 (‘) from which D,(Q’“~ follows. 6~~ can be calculated from [3l], , 

after which the solution @ = O#(“) t (I)(‘) is known. Substitution of this solution in [22’] yields 
the dimensionless density difference. The solution of [8’] with the boundary conditions 
[lo’]-[13] has been performed with the aid of the finite element method. 

5. FINITE ELEMENT METHOD 

After multiplying [8’l by a variation S@(& X) satisfying 

S@(& 0) = 0 and S@,(& nL) = 0, WI 

and integrating over the domain fl bounded by X = 0, X = nL, 0 = 0 and 8 = T the following 
equation can be derived 

-II H’gradO*grad6@dS= z 80 dS. r331 
n n 

The derivation is standard and therefore omitted. It is noted that [lo’] and [ll’] are natural 
boundary conditions, so that only [12’] and [13’] are required to be imposed. 0 and 66 are 
approximated by Qh and SQh respectively, and ah and &Dh have been taken as piecewise linear 
on a triangulation. After substitution of ah and S@’ in 1331 a linear system of equations is 
found, which can be solved. To save computer time the integrals occurring in these equations 
have been calculated using a three-point Gauss rule. An example of the mesh in the 0, X plane 
used in the calculation is given in figure 4. To investigate the numerical error in @, computations 
with one half of the grid size have been carried out. 

MF Vol. IO. No. I-D 
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0 X - ~  L 

Figure 4. Example of mesh in 0, X plane used in the calculation. 

6. RESULTS FROM THE THEORETICAL MODEL 

The influence of the number of wavelengths n on the distribution of • in the water film was 
studied first. As mentioned earlier the objective in taking a number of wavelengths n into 

account is to find the periodic solution. To this end n was successively given the following 
values: 1, 7, 21 and 41. Equation [8'] with boundary conditions [10']-[13'] was solved for these 
values and the integrals of [22'] and [27'] calculated. For the water fraction ( ~ H0 = hdR),  the 

dimensionless wavelength L = l/R, the dimensionless amplitude of the ripple A = a/R, the 

dimensionless location L' = I'll of the maximum of the ripple and the dimensionless eccentricity 
E = d R  the following values were chosen: H0 = 0.06, L = 1, A = 0.006, L'  = 0.9 and E = 0.053. 

(As mentioned earlier the real core eccentricity is equal to 2e; but in the following E = d R  is 
called the dimensionless eccentricity, corresponding to the eccentricity at the top of the pipe, 
where the downthrust due to lubrication is greatest.) In this way it was investigated how many 

wavelengths were necessary for the O-distribution over a wavelength and for the integrals of 
[22'] and [27'] to become independent of the location in the pipe. In figure 5 the results are 

~ r L  

shown for the integral (2hrL) f f • cos 0 dO dX from [22']. (The results for • and the other 
0 0 

integrals are similar.) In this figure the value for the integral is given for each wavelength of the 
ripple; from the first between X = 0 and X = L to the last between X = (n - 1)L and X = nL. 
After about three wavelengths the value of the integral is seen to become independent of the 
location of the wavelength. So n = 7 is sufficient for the lubrication approximation to settle to 
near-periodic conditions. To be on the safe side, n = 13 was used in all further calculations; the 
integrals of [22'] and [27'] were calculated from the ~-distdbution over the wavelength between 

X = 6L and X = 7L. 
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Figure 5. Distribution of (2/IrL) / / * cos O dO dX over a ripple o f .  wavelengths. 

0 0 

Next an initial calculation, for core-annular flow was performed. For H0, L, A and L' the 
following values were again chosen: H0 = 0.06, L--  1, A--0.006 and L'--0.9. The dimension- 
less eccentricity E = elR was increased step by step from 0 to the value at which the core 
almost touches the pipe wall. For these values of the parameters, [8 ~] with the boundary 
conditions [10']-[lYJ was solved and the integrals of [22'] and [27'] were calculated. Equation 
[22'] yields the dimensionless density difference P -  Pc between water and off which can be 
counterbalanced by the lubrication forces. Equation [27'] gives the dimensionless pressure 
gradient over the pipe. The results are shown in figures 6(a) and Co). The dots in these figures 
are the calculated points. The point where the core touches the pipe wall is indicated in the 
figures. In figure 6(a) the density difference required t for steady core-annular flow in the case 
of p - pc = 100 kg/m 3,/~ = 1 mPa.s,$ W = 0.2 m/s and R = 0.025 m is also given. The value of E 
at which the dimensionless density difference which can be counterbalanced is equal to the 
required dimensionless density difference gives the dimensionless eccentricity at which steady 
core-annular flow is possible. 

From figure 6(b) the dimensionless pressure gradient for steady core-annular flow can then 
be found. As can be seen from figure 6(a), steady core-annular flow is only possible with a very 

ti,e. required for a balance between the lubricaton force and buoyancy force. 
~1 mPa.s-- 0.001 ~/ms. 
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P - Pc 
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Figure 6(a). Dimensionless density difference as a function of the dimensionless eccentricity, 
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L = 1 
4 0 0 -  A = 0 .006  

L ' =  0.9 

300  Ho= 0 .06  

200  - 

100 - 

0 
0 

I 
I 

CORE TOUCHES I 
PIPE WALL 

I 
I 
I 
I 
I 

0.02 0 .04 0.06 
E 

Figure 6(b). Dimensionless pressure gradient as a function of the dimensionless eccentricity. 

eccentric core. Only when the annular film in the upper part of the pipe has become very thin 
are the lubrication forces large enough to counterbalance the buoyancy force of the core. 

In figure 6(a) the dimensionless density difference required for steady core-annular flow in an 
8-inch pipe (R = 0.1 m) with p - Pc = 100 kg/m3, ~ = I mPa.s, and W = 0.2 m/s is also given. From 
figure 6(a) it can be concluded that, for steady core-annular flow in an 8-inch pipe (R = 0.1 m), 
greater dimensionless eccentricity is required than in a 2-inch pipe (R = 0.025 m). From figure 6(b) 
it then follows that the dimensionless pressure gradient is also larger. So the dimensionless 
pressure gradient increases with the pipe diameter. 

In figure 7 the distribution of ~(c) over the wavelength between X = 6L and X = 7L for five 
values of 0 is given for H0 -- 0.06, L = 1, L' = 0.9, A = 0.006 and E = 0.053. As can be seen, the 
variations in 4) (c) (and thus in the pressure p) are very large only in the upper part of the pipe, 
where the water film is very thin. In the lower part of the pipe the variations are negligibly 
small. 
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Figure. 7. Pressure, ~(c), distribution over a wavelength of the ripple for five different radial positions of 0. 

The azimuthal film flow can be understood by substitution of the results for ~(c) from figure 
7 in [14]. On one side of the ripple the pressure is higher at the top than at the bottom. The 
pressure gradient drives the water out of the thin upper film around the core to the thick lower 
film. However, at the other side of the tipple the pressure at the top is lower than at the bottom. 
By this reverse pressure gradient the water is driven back to the upper film. So superimposed 
on the flow in the axial direction of the pipe there is an oscillatory azimuthal film flow; the 
azimuthal flow changes direction from one side to the tipple to the other side. 

It is difficult to measure accurately the ripple parameters, such as wavelength and amplitude, 
from the observations. Therefore, a sensitivity study has been carried out to investigate the 
influence of these parameters on the hydrodynamic lubrication of the core by the water film. 
The influences of the dimensionless wavelength L, the dimensionless amplitude A, the dimen- 
sionless location L' of the maximum of the ripple amplitude and the water fraction ( ~  H0 = 
holR) have been studied. As a reference case the following values were selected: L = 1, 
A = 0.003, L' = 0.9 and Ho = 0.02. One of the parameters was varied, while the others were kept 
constant. 

Figures 8(a) and Co) present the results for L. Figure 8(a) shows the dimensionless density 
difference P - P~, which can be counterbalanced by the lubrication force, as a function of the 
dimensionless eccentricity E for three values of L. Again, the values of the dimensionless 
density difference which are required for steady core-annular flow with p - P c  = 100 kglm 3, 
/~ = 1 mPa.s, W = 0.2 mls and R = 0.025 m or R = 0.1 m are also indicated in the figure, as is the 
eccentricity where the core touches the pipe wall. Figure 8(b) shows the dimensionless pressure 
gradient (O2-01)lnL over the pipe as a function of E for the three values of L. From the 
figures it can be concluded that, when L decreases, the eccentricity where the dimensionless 
density difference is equal to the required dimensionless density difference increases, and the 
dimensionless pressure gradient increases. However, the effect is not very strong in the region 
of parameter values where the calculations were performed. 
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Figure 8(a). Dimensionless density difference as a function of dimensionless eccentricity for three values of L 
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Figure 8(b). Dimensionless pressure gradient as a function of dimensionless eccentricity for three values of L 

Figures 9(a) and (b) present the results for A. When A decreases, the eccentricity at which 
the dimensionless density difference is equal to the required value increases, and the dimen- 
sionless pressure gradient increases. When the ripple decreases completely (A = 0), the eccen- 
tricity increases until the core touches the upper part of the pipe wall. In this case the 
dimensionless pressure gradient becomes very large. 

Figures 10(a) and (b) present the results for L'. When L' decreases, the eccentricity where 
the dimensionless density difference is equal to the required value increases, and the dimen- 
sionless pressure gradient increases. When the ripple is symmetrical (L' = 0.5) the eccentricity 
increases until the core touches the pipe wall. In such a case the dimensionless pressure 
gradient again becomes very large. 

Figure ll(a) and (b) give the results for different values of Ho. When H0 decreases, the 
eccentricity where the dimensionless density difference is equal to the required value decreases, 
and the dimensionless pressure gradient increases. The thickness of the water film in the upper 
part of the pipe increases only slightly. When more water is supplied, the greater portion of it 
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Figure 9(a). Dimensionless density difference as a function of dimensionless eccentricity for three values of A. 
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Figure 9(b). Dimensionless pressure gradient as a function of dimensionless eccentricity for three values of A. 

goes to the lower part of the pipe. This is qualitatively similar to the visual observations 
represented in figure I. 

7. EXPERIMENTS IN A 2-INCH AND AN S-INCH PIPELINE 

In order to investigate whether, with the theoretical model, realistic pressure gradient 
predictions can be made for core-annular flow in larger pipes, a base set of reliable experimen- 
tal data is required. To this end, experiments were carried out with high-viscosity oil 

(500 mPa.s t  and more) in a number of pipes with sizes ranging from 1 to 8 inches. Here we 
present some of the results for a 2-inch and an 8-inch pipe. 

The first set of experiments was performed in the 2-inch pipe described in section 2. The 
difference in density between water and oil was about 30 kg/m 3. The amount  of water was 
varied between 20 and 3%. The oil viscosities varied from 2300 to 3300 mPa.s. 

~'1 mPa.s = IcP. 
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Figure lO(a). Dimensionless density difference as a function of dimensionless eccentricity for three values 
of L'. 
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Figure 10(b). Dimensionless pressure gradient as a function of dimensionless eccentricity for three values 
of L'. 

The second set of experiments was carried out in horizontal 8-inch pipe circuit, 888 m long, 
comprising 22 right-angle bends of 2.5-1.5 D radius, which did not pose any problems for 
stable core-annular flow operation. The difference in density between water and oil was about 
45 kg/m 3. The oil viscosities for the pressure gradient tests considered here varied from 1200 to 
2200 mPa.s, at a superficial oil velocity of 1 m/s. In these tests the input water fraction ranged 
from 10% to 1%. 

The pressure gradient ratios (APoJAp,o) measured in the 2-inch and 8-inch pipes at a 
superficial velocity of approximately l m/s are summarized in figure 12. Apow re- 
presents the pressure drop over the pipe for core-annular flow. Ap,o is the pressure drop 
when only oil flows through the pipe at the same superficial oil velocity as for core-annular 
flow. It is quite remarkable that, when the percentage of water is so small, the pressure gradient 
ratio hardly changes with water fraction. It is also evident that for the larger pipe the benefit of 
core-annular flow operation is smaller than for the 2-inch pipe: the average pressure loss ratio is 
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Figure 1 l(a). Dimensionless density difference as a function of dimensionless eccentricity for three values 
of Ho. 
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Figure 11(b). Dimensionless pressure gradient as a function of dimensionless eccentricity for three values 
of He. 

0.10 as against 0.01 for the 2-inch pipe. In figure 12 V,o represents the superficial oil velocity, ~o 
the oil viscosity and Ap _- p - pc. 

8. COMPARISON BETWEEN THEORETICAL MODEL AND EXPERIMENTS 

For known interfacial wave characteristics (the parameters A, L and L~ and for a known 
dimensionless thickness of the water annulus Ho, calculations with the theoretical model for a 
particular pipe size are performed as follows: 

--plots are determined for the dimensionless density difference, P - Pc, and the dimension- 
less pressure gradient per unit length, (~2 -  ~O/nL, as a function of core eccentricity, E (e.g. as 
shown in figure 6); 

--the eccentricity is found which corresponds to the dimensionless density difference for 
the particular pipe problem; 

--with this eccentricity, the dimensionless pressure gradient is calculated. 
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Figure ]2. Pressure gradient ratios measured in a 2-inch and an 8-inch pipe for various input water fractions, 

The main problem is what values to choose for the parameters that describe the interracial 
wave. We took as a basis the photographs taken during the tests in the 2-inch pipe (see figure 1) 
and the pressure losses measured. For tests with water fraction of 0.06 our best estimates for 
these parameters are A = 0.003, L = 0.8, L ' =  0.8 (L and L' were determined from the pho- 
tographs, while the value chosen for A is the one that gives best agreement with the pressure 
loss measured). This choice corresponds to an average wave amplitude of 0.075 mm and a 
wavelength of 20 mm, i.e. nearly equal to the pipe radius. With regard to the 8-inch pipe, no 
information on wave characteristics is available; however, since the tests in this larger pipe 
were performed with similar crude oils, we used the same absolute values for the wave 
parameters. The dimensionless parameters A and L, being inversely proportional to R, are then 
smaller than for the 2-inch pipe. This guarantees, as can easily be verified, that, for a core 
velocity of I m/s, all three conditions [5], [6] and [7] for the applicability of the lubrication 
theory are satisfied in the upper part of the pipe for all pipe sizes of 2 inches and larger. At the 
bottom, condition [7] is in general not satisfied. However, as has been shown, the important part 
of the water film is at the top, where the downthrust due to lubrication forces is generated. The 
lubrication forces at the bottom are neglegible. Moreover, when we consider larger core 
velocities with less eccentricity, a point will be reached (at some critical velocity, which will 
depend on the individual pipe size) when condition [7] is no longer satisfied at the top, either. 

In figure 13 we have plotted pressure gradient ratios measured in the 2-inch pipe with 
average oil viscosities of 2300, 3200 and 3300 mPa.s and superficial oil velocities of about 1 m/s, 
and results of calculations with the theoretical model. The measured data scatter around the 
calculated values; the average deviations do not exceed 7%. 

The theoretical model will only be a valuable tool in the designing of pipelines for 
core-annular flow operation if it can be scaled up to larger pipe sizes. A check for the ability of 
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Figure 13, Measured and calculated pressure loss ratios for core-annular flow in a 2-inch pipe. 

the model to make reasonable predictions, using the estimated parameter  values for  the 
interracial waves, for pipe sizes other than 2 inches is a crucial test. We put our model to this 

test with a calculation for the 8-inch pipe. We used a water fraction of 0.06 as a typical case. 
Figure 14 shows measured and calculated pressure loss ratios for six test series, three in the 
2-inch pipe and three in the 8-inch pipe. Model predictions for the 8-inch pipe are promising, 
although there is a systematic deviation of some 30%. The operating conditions under which the 

measurements given in figure 14 were obtained can be found in figures 12 and 13. 
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Figure 14. Measured and calculated pressure loss ratios in a 2-inch and an 8-inch pipe. 
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9. CONCLUDING REMARKS 

A theoretical model for oil-water core-annular flow through a pipe has been developed. 
According to this model the movement of the rippled oil core with respect to the pipe wall 
induces pressure variations in the water film, which can exert a force on the core in a vertical 
direction. This force can be so great that it counterbalances the buoyancy force on the core, 
allowing a steady core-annular flow to arise. 

The ripples in the core are essential: if the amplitude of the ripple becomes zero, there will 
no longer be a force on the core to counteract the buoyancy force. In such a case the core will 
rise in the pipe, until it touches the pipe wall. 

The magnitude of the force also depends to a large extent on the shape of the ripple; when 
the ripple is symmetrical, again, no counteracting force will be present. 

Adding more water to the flow does not change the flow pattern very much. The additional 
water largely goes to the lower part of the pipe. This is in agreement with observations. 

To check the validity of the model, oil-water core-annular flow experiments have been 
carried out in a 2-inch and in an 8-inch pipe. These experiments indicate that core-annular flow 
becomes less advantageous for larger pipe sizes. This is correctly predicted by the model, 
although pressure loss ratios computed for the 8-inch pipe are some 30% too low. This could be 
due to turbulence in the lower part of the water film, which could become increasingly 
important for larger pipe sizes. This is a point of further study. 

For reliable application of the model more knowledge is required about the amplitude and 
wavelength of the interfactal waves and about the thickness of the water film in the upper part 
of the pipe as a function of the flow parameters. Work to this end is in hand. 
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